

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/21

Paper 2 AS Level Structured Questions

May/June 2017

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

CAMBRIDGE
International Examinations

This document consists of 7 printed pages.

[Turn over

May/June 2017

Question	Answer				
1(a)	(stress =) force / area or kg m s ⁻² / m ²	B1			
	$= kg m^{-1} s^{-2}$	A1			
1(b)(i)	$0.58 = 2\pi \times [(4 \times 0.500 \times 0.600^{3}) / (E \times 0.0300 \times 0.00500^{3})]^{0.5}$	C1			
	$E = [4\pi^2 \times 4 \times 0.500 \times (0.600)^3] / [(0.58)^2 \times 0.0300 \times (0.00500)^3]$	C1			
	$= 1.35 \times 10^{10} \text{ (Pa)}$				
	= 14 (13.5) GPa	A1			
1(b)(ii)1.	(accuracy determined by) the closeness of the value(s)/measurement(s) to the true value	B1			
	(precision determined by) the range of the values/measurements	B1			
1(b)(ii)2.	l is (cubed so) $3 \times$ (percentage/fractional) uncertainty and T is (squared so) $2 \times$ (percentage / fractional) uncertainty and (so) l contributes more	B1			

Question	Answer	Marks
2(a)	resultant force (in any direction) is zero	B1
	resultant torque/moment (about any point) is zero	B1
2(b)(i)	$a = (v - u) / t$ or gradient or $\Delta v / (\Delta)t$	C1
	e.g. $a = (8.8 - 4.6) / (7.0 - 4.0) = 1.4 \text{ m s}^{-2}$	A1
2(b)(ii)	$s = 4.6 \times 4 + [(8.8 + 4.6)/2] \times 3$	C1
	= 18.4 + 20.1	A1
	= 39 (38.5) m	
2(b)(iii)	$\Delta E = \frac{1}{2} \times 95 \left[(8.8)^2 - (4.6)^2 \right]$	C1
	= 3678 – 1005	A1
	= 2700 (2673) J	
2(b)(iv)1.	weight = 95 × 9.81 (= 932 N)	C1
	vertical tension force = 280 sin 25° or 280 cos 65° (=118.3 N)	C1
	F = 932 + 118	A1
	= 1100 (1050) N	
2(b)(iv)2.	horizontal tension force = 280 cos 25° or 280 sin 65° (= 253.8 N)	C1
	resultant force = 95 × 1.4 (= 133 N)	C1
	133 = 253.8 – R	A1
	R = 120 (120.8) N	

Question	Answer					
3(a)	$\rho = m/V$					
	$V = \pi d^2 L / 4 \text{ or } \pi r^2 L$	C1				
	weight = $2.7 \times 10^3 \times \pi \ (1.2 \times 10^{-2})^2 \times 5.0 \times 10^{-2} \times 9.81 = 0.60 \ N$	A1				
3(b)(i)	the point from where (all) the weight (of a body) seems to act					
3(b)(ii)	W × 12					
	$(0.25 \times 8) + (0.6 \times 38)$	C1				
	W = (2 + 22.8) / 12	A1				
	= 2.1 (2.07)N					
3(c)(i)	pressure changes with depth (in water)	B1				
	or pressure on bottom (of cylinder) different from pressure on top					
	pressure on bottom of cylinder greater than pressure on top	B1				
	force (up) on bottom of cylinder greater than force (down) on top					
3(c)(ii)	anticlockwise moment reduced and reducing the weight of X reduces clockwise moment	B1				
	anticlockwise moment reduced so clockwise moment now greater than (total) anticlockwise moment					

Question	Answer	Marks
4(a)	(two) waves travelling (at same speed) in opposite directions overlap	B1
	waves (are same type and) have same frequency/wavelength	B1
4(b)(i)	λ = 12 / 250 (= 0.048 m)	C1
	distance = 1.5 × 0.048	A1
	= 0.072 m	
4(b)(ii)	T = 1/250 = 0.004 (s) or 4 (ms)	C1
	1. curve drawn is mirror image of that in Fig. 4.2 and labelled P	A1
	2. horizontal line drawn between A and B and labelled Q	A1

Question	Answer	Marks
5(a)	observed frequency is different to source frequency when source moves relative to observer	В1
5(b)	$360 = (400 \times 340) / (340 \pm v)$	C1
	$v = 38 (37.8) \mathrm{m s^{-1}}$	A1
	away (from the observer)	B1

Question	Answer	Marks
6(a)	volt / ampere	B1
6(b)(i)	$R_{\rm T} = [1/3.0 + 1/6.0]^{-1} + 4.0 \ (= 6.0 \ \Omega)$	C1
	I = 1.5/6.0	C1
	= 0.25 A	A1
6(b)(ii)	V _B = 0.5 V	A1
	I = 0.5/3.0	
	= 0.17 (0.167) A	
6(b)(iii)	$P = I^2 R$ or VI or V^2/R	C1
	ratio = $(0.167^2 \times 3.0)/(0.25^2 \times 4.0)$	A1
	= 0.33	
6(c)(i)	vary/change/different radius/diameter/cross-sectional area (of wire)	B1
6(c)(ii)	v = I / Ane	C1
	ratio = $\frac{(I_{\rm B} / A_{\rm B})}{(I_{\rm C} / A_{\rm C})}$ or $\frac{I_{\rm B}}{I_{\rm C}} \times \frac{A_{\rm C}}{A_{\rm B}}$	
	$(R \propto 1/A \text{ so}) \text{ ratio } = \frac{I_{\text{B}}}{I_{\text{C}}} \times \frac{R_{\text{B}}}{R_{\text{C}}} = \frac{0.167}{0.25} \times \frac{3.0}{4.0}$	A1
	= 0.50	
6(d)(i)	0.25 A to 0.13 (0.125) A or halved	A1
6(d)(ii)	no change	A1

Question	Answer				Marks	
7(a)(i)	(proton is uud so) $(2/3)e + (2/3)e - (1/3)e = e$					B1
7(a)(ii)	(neutron is udd so) $(2/3)e - (1/3)e - (1/3)e = 0$				B1	
7(b)(i)			β-	β ⁺		B1
		nucleon number	90	64		
		proton number	39	28		
	all correct					
7(b)(ii)	weak (nuclear force/interaction)				B1	
7(b)(iii)	β^- decay: electron and (electron) antineutrino β^+ decay: positron and (electron) neutrino all correct				B1	